Sekarangperhatikan gambar di bawah ini. 198cm d 264cm 19. Keliling sebuah persegi panjang 48 cm dan panjang 15 cm maka lebar persegi panjang tersebut adalah. A3926 cm b4026 cm c4126 cm d4226 cm. 10030 cm 3 C. Keliling 12 10 18 8 48 cm. Volume bangun ruang berikut adalah. Keliling bangun tersebut adalah 80 cm. Baca juga: Soal Dan Pembahasan
BerandaPerhatikan gambar berikut. Pada gambar di samping,...PertanyaanPerhatikan gambar berikut. Pada gambar di samping, panjang AB = 12 cm dan AC = 16 cm. Titik O merupakan pusat lingkaran, hitunglah b. luas daerah yang diarsir !Perhatikan gambar berikut. Pada gambar di samping, panjang AB = 12 cm dan AC = 16 cm. Titik O merupakan pusat lingkaran, hitunglah b. luas daerah yang diarsir ! DRMahasiswa/Alumni Universitas Muhammadiyah MalangPembahasanCAB menghadap diameter sehingga membentuk sudut siku-siku, Jari - jarinya adalahCAB menghadap diameter sehingga membentuk sudut siku-siku, Jari - jarinya adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!939Yuk, beri rating untuk berterima kasih pada penjawab soal!DADesti Aryani Makasih ❤️ Ini yang aku cari!ASAisyah Suwitonur Ini yang aku cari! Bantu banget Makasih ❤️zszepana sihite Makasih ❤️ Pembahasan lengkap banget KerenSPSinta PutriPembahasan lengkap banget©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Padagambar disamping AB//DE, panjang AB=18 cm, CD=12 cm, dan CE=8 cm, maka panjang AC adalah. Question from @MesaKim - Sekolah Menengah Pertama - Matematika
Kelas 8 SMPLINGKARANKeliling dan Luas LingkaranPada gambar di atas, panjang PQ=16 cm dan QR=12 cm. Luas yang diarsir untuk pi=3,14 adalah .... a. 122 cm^2 b. 258 cm^2 c. cm^2 d. cm^2Keliling dan Luas LingkaranKeliling dan Luas Persegi Panjang dan PersegiLINGKARANSEGI EMPATGEOMETRIMatematikaRekomendasi video solusi lainnya0042Keliling lingkaranyang berjari-jari 14 cm adalah ....0217Luas lingkaran yang memiliki keliling 132 cm adalah ... .0149Luas daerah yang diarsir pada gambar berikut adalah ... 8...Teks videojika kita merasa seperti ini bisa kita lihat pada soal diketahui bahwa panjang PQ = 16 cm Kemudian untuk panjang QR nya adalah 12 cm langkah selanjutnya adalah kita harus mencari jari-jari dari lingkaran tersebut yaitu dengan cara mencari panjang diagonal dari persegi panjang tersebut ya untuk mencari panjang diagonal persegi panjang tersebut maka bisa kita gunakan rumus phytagoras Nya maka panjang PR = akar dari panjang PQ kuadrat ditambah q r kuadrat nya dimana panjang PQ yaitu 16 cm, maka 16 kuadrat + QR nya panjangnya yaitu 12 jadi 12 kuadrat = akar 16 kuadrat yaitu 256 + 12 kuadrat 144, maka = akar 400 akar dari 400 yaitu 20 maka kita temukan panjang diagonal persegi panjang tersebut adalah 20 cm yang kemudian bisa kita lihat bahwa panjang diagonal tersebut merupakan diameter dari lingkaran Nya maka untuk mencari jari-jari adalah diameter dibagi 2 maka jari-jarinya yaitu 20 cm dibagi dua jadi kita dapatkan jari-jari dari lingkaran tersebut adalah 10 cm langkah selanjutnya adalah kita mencari luas lingkaran dimana rumus dari luas lingkaran adalah phi r kuadrat ya Di mana belinya pada soal ditentukan yaitu 3,4 belas kemudian dikalikan dengan r kuadrat r nya adalah tadi 10 cm maka 10 kuadrat ya = 3,4 * 10 ^ 2 dikalikan 100 maka kita dapatkan 314 ya satuannya adalah cm2 kemudian langkah selanjutnya adalah kita mencari luas dari persegi panjang tersebut nya rumus dari luas persegi panjang adalah panjang dikalikan lebar maka sama dengan panjangnya adalah p q yaitu 16 cm kemudian dikalikan lebar nya yaitu QR 12 cm 16 dikalikan 12 yaitu 192 satuannya adalah cm2, maka untuk luas daerah yang diarsir = luas lingkaran dikurangi luas persegi panjang. Sama dengan luas lingkarannya yaitu 314 cm2 dikurangi 192 cm2, maka = 122 cm2 jadi kita dapatkan jawabannya untuk luas yang diarsir yaitu 122 cm2 yang sampai jumpa di soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diberikandua buah segitiga siku-siku ABC dan ACD yang saling berhimpit di sisi AC. Pada segitiga siku-siku berlaku teorema Pythagoras yang menyatakan bahwa kuadrat sisi miring sama dengan jumlahan dari kuadrat sisi-sisi tegaknya , atau dalam rumus : .. Diketahui panjang AB 12 cm, BC 9 cm, dan CD 25 cm.. Panjang sisi miring AC pada segitiga ABC dihitung dengan rumus Pythagoras adalah
Ingatlah sifat sudut keliling lingkaran "Sudut keliling yang menghadap ke diameter lingkaran, besarnya ." Perhatikan gambar! Sudut keliling menghadap ke diameter . Maka , sehingga segitiga merupakan segitiga siku-siku, dengan diameter sebagai sisi miring. Dengan menggunakan dalil Pythagoras diperoleh Akibatnya panjang jari-jari lingkaran tersebut adalah Selanjutnya, perhatikan bahwa luas daerah yang diarsir adalah luas setengah lingkaran dikurangi luas segitiga . Untuk menghitung luas setengah lingkaran digunakan nilai pendekatan . Berikutnya, luas segitiga adalah Dengan demikian, luas daerah diarsir adalah Jadi, luas daerah yang diarsir mendekati 61 cm2.
Padagambar disamping, panjang AB = 12 cm dan AC = 16 cm. titik O merupakan titik pusat lingkaran. hitunglah : a. jari -jari llingkaran O B. luas daerah yang diarsir 1 Lihat jawaban
Menakjubkan Pada Gambar Disamping Panjang Ab 12 Cm Dan Ac 16Cm Referensi. Panjang ab=12 cm dan ac. Pada setiap diagonal sisi balok ditempel Uji Kompetensi Materi Lingkaran Kelas VIII Mikirbae from gambar disamping jika panjang ab=12 cm. Kesebangunan diketahui panjang ab 9 cm dan ac 12 cm. Segitiga abc kongruen dengan segitiga Tiang 1 = 24 M Tinggi Tiang 2 = 14 M Jarak Tiang Pq= 22M Ditanyakan Top 1 baby doll amro celana panjang rayon terbaik 2022. 8ac 72 ac 9 cm. Sinus suatu sudut adalah sisi panjang sisi tegak di hadapan sudut dibagi dengan panjang sisi miring yang membentuk sudut Abc Sama Kaki Dengan Ac = Bc = 25 Cm Dan Ab = 14 ab = 12 cm, bc = 9 cm, dan cg = 8 cm. Pada gambar disamping jika panjang ab=12 cm. 5perhatikan gambar berikutс15 cma 12 cm bpanjang ac adalaha3 cmb6 cmc9 cm d10 Daerah Yang Diarsir !Titik o merupakan pusat lingkaran, hitunglah A luas permukaan bola1 luas permukaan kerucut b. Panjang ab dan ac berturut Gambar Disamping!Pada Gambar Disamping, Panjang Ab = 12 Cm Dan Ac = 16 ab=12 cm dan ac. Kesebangunan diketahui panjang ab 9 cm dan ac 12 cm. A jari jari lingkaran o b luas daerah yang Soal Dimensi Tiga Jawaban Dan gambar di samping, panjang ab = 12 cm dan ac = 16 cm. Pada gambar di samping,panjang ab=12cm dan ac=16cm. Kesebangunan diketahui panjang ab 9 cm dan ac 12 cm.
Perhatikangambar persegi panjang di bawah ini ! Sisi AB = sisi CD dan sisi AC = sisi BD. Diagonal AD = diagonal BC. Pesegi panjang di atas mempunyai ukuran panjang 20 cm dan lebar 12 cm. Maka jika di tanyakan luas dan kelilingnya kita dapat menggunakan rumus rumus di bawah ini. 1.
Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga sebangunSegitiga-segitiga sebangunKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0100Perhatikan gambar di bawah ini!Perbandingan sisi pada seg...0134Perhatikan gambar berikut. 10 cm A B F C D 4cm EDiketahui...Teks videojika kita bertemu soal seperti ini maka perlu kita ingat kembali pada segitiga ini berlaku beberapa rumus seperti a b kuadrat = BD dikali lalu adik kuadrat = BD dikali d c b d dikali DC Nah di sini dikasih tahu bahwa adiknya 12 dan BC nya itu = 15 berarti kita bisa menggunakan yang pertama terlebih dahulu jadinya AB kuadrat = BD dikali b c a b nya itu adalah 12 berarti 12 kuadrat = BD dikali b c nya 15 maka beda itu = 12 * 12 atau 12 kuadrat per 15 Nah ini bisa dibagi 3 Sin phi 4 disini 5 maka ini adalah Puluh delapan per lima kita sudah ketemu bedanya sekarang kita cari DC nya oke. Nah di mana Di sini kan BC nya itu 15 berarti untuk menentukan DC itu 15 dikurang b d berarti DC itu = 15 dikurang b d bedanya adalah 48 per 5 maka ini kita samakan penyebutnya 15 itu adalah 75 per 5 dikurang 48 per 5 = 27 per 5 maka kita sekarang mencari Ad yang ditanya disini adalah AD ke jadi ad = BD dikali DC y maka ini sama dengan bedanya itu 48/5 dikali DC nya adalah 27 per 5 ini = 1296 / 25 maka Adik itu sama dengan akar 1296 dibagi akar 25 = akar 1296 itu adalah 3636 per akar 25 adalah 56 / 5 adalah 7,2 jawaban yang paling tepat adalah C sampai di sini sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Pertanyaan Perhatikan gambar berikut. Pada gambar di samping, panjang AB = 12 cm dan AC = 16 cm. Titik O merupakan pusat lingkaran. Hitunglah: a. jari-jari lingkaran O. DR.
Kelas 9 SMPKESEBANGUNAN DAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0142Perhatikan gambar berikut! A B C 21 cm 24 cm P Q R 14 cm ...Teks videodisini kita memiliki sebuah soal dimana kita diberikan suatu gambar segitiga yang merupakan segitiga siku-siku terdapat 3 buah segitiga dengan masing-masing panjang sisi AB nya adalah = 12 cm dan panjang sisi miringnya adalah = 16 cm dan diketahui dalam segitiga tersebut memiliki panjang sisi yang sama panjang dimana adalah b = b dan = H dan dalam soal kita diminta menentukan panjang garis BF nya dimana untuk menentukan panjang garis PR kita akan menentukan dulu ketiga dari segitiga tersebut adalah saling kongruen dimana untuk sudut yang sama adalah sudut siku-siku nya dia ada sudut a sudut F dan juga ada sudut G untuk panjang sisi yang bersesuaian sudah ada di mana adalah panjang sisi BC panjang BD dan panjang GH seperti itu yang sama panjang dan kita akan menentukan lagi salah satu sudut yang sama besar Adalah di sini ada sudut B = sudut B dia Dan kita akan ambil 2 buah segitiga ABC dan segitiga B untuk segitiga yang saling kongruen yang memenuhi Sisi sudut sudut dan dengan itu kita akan dapat menentukan panjang dari garis BF = panjang dari garis AB di mana A 8 = 12 cm dan untuk jawaban yang tepat pada option a dia baik Itulah hasilnya sampai sini sampai bertemu lagi dengan soal-soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Gambar Panjang AB = 12 cm, BC = 9 cm, dan CG = 8 cm. Pada setiap diagonal sisi balok ditempel pita. a. Panjang pita paling panjang adalah pita AC. Perhatikan gambar berikut ini segitiga ABC siku sikunya di sudut C dengan AC 12 cm dan BC 5 cm. Misstronghit 5 days ago. Kiat Bagus Dibawah ini manakah yang tidak termasuk kedalam unsur-unsur
PembahasanPerhatikan bahwa CAB siku-siku karena menghadap diameter lingkaran, sehingga panjang diameterBC dapat dicari dengan menggunakan teorema pythagoras. BC 2 BC = = = = = = AB 2 + AC 2 AB 2 + AC 2 1 2 2 + 1 6 2 144 + 256 400 20 Diperoleh d = 20 cm maka r = 2 20 = 10 cm Jadi, jari-jari lingkaran tersebut adalah 10 bahwa CAB siku-siku karena menghadap diameter lingkaran, sehingga panjang diameter BC dapat dicari dengan menggunakan teorema pythagoras. Diperoleh maka Jadi, jari-jari lingkaran tersebut adalah 10 cm.
BU2KngD. q9g7h9dkgy.pages.dev/78q9g7h9dkgy.pages.dev/30q9g7h9dkgy.pages.dev/334q9g7h9dkgy.pages.dev/374q9g7h9dkgy.pages.dev/185q9g7h9dkgy.pages.dev/358q9g7h9dkgy.pages.dev/211q9g7h9dkgy.pages.dev/12q9g7h9dkgy.pages.dev/90
pada gambar disamping panjang ab 12 cm dan ac 16cm